Comparison of portable and conventional ultrasound imaging in spinal curvature measurement
نویسندگان
چکیده
PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ult rasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The average difference per transverse process angle measured was 3.00 ± 2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.
منابع مشابه
Portable optically tracked ultrasound system for scoliosis measurement
Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favorable over X-ray because it does not emit ionizing radiation. It has been shown in the past that tracked ultrasound can be used to localize vertebral transverse processes as landmarks along the spine ...
متن کاملsystematic review of the characteristics of ultrasound measurements in the evaluation of spinal curvatures in scoliosis patients
Abstract Aims: Scoliosis is one of the secondary complications in amputation veterans, which requires periodic evaluations. The gold standard for evaluating the spine is radiography, which has caused many concerns due to the very high doses of X-ray radiation. For this reason, therapists are finding for an alternative method for this tool, so ultrasound is a non-invasive tool with different me...
متن کاملLocalization of the transverse processes in ultrasound for spinal curvature measurement
PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly...
متن کاملSpinal curvature measurement by tracked ultrasound snapshots.
Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favored over radiography because it does not emit ionizing radiation. Therefore, we tested an ultrasound system for spinal curvature measurement, with the help of spatial tracking of the ultrasound transd...
متن کاملDesign, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging
This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe...
متن کامل